TV-Tuner-IC with Two Separate Oscillators and Mixers, SAW-Driver and Dual-State Band Switch

Features

- Frequency range from 48 to 860 MHz .
- Band A: balanced high impedance mixer input and amplitude controlled oscillator.
- Band C: balanced low impedance mixer input and symmetrical oscillator.
- Voltage regulator for stable operating characteristics.
- ESD protection on all pins except oscillator pins and RF-inputs.

Package: SO20

- SAW filter driver with low impedance output.

Block Diagram

Figure 1. Block diagram pinning of U2320

Temic

U2320B-AFL

Pin Configuration

Osc A, base	1	20	GND (RF)	Pin	Symbol	Function
				1	Osc A, base	Oscillator band A, base
GND (common)	2	19	RF in, A	2	GND (common)	Ground, common
			RF in, A	3	Osc A, coll.	Oscillator band A, collector
Osc A, coll.	3	18		4, 7	Osc B, base	Oscillator band B, bases
				5,6	Osc B, coll.	Oscillator band B, collectors
Osc B, base	4	17	RF in, B	8	Band sw.	Dual-state band switch
				9, 10	SAWF, out	SAW filter driver outputs
Osc B, coll.	5	16	RF in, B	11, 12	SAWF, inp.	SAW filter driver input
				13, 14	Mix, out	Mixer outputs, open collector
Osc B, coll.	6	15	V_{S}	15	V_{S}	Supply voltage $\mathrm{V}_{\text {S }}$
				16, 17	RF in, B	RF inputs, band B
Osc B, base	7	14	Mix, out	18, 19	RF in, A	RF inputs, band A
				20	GND (RF)	Ground, RF part
Band sw.	8	13	Mix, out			
SAWF, out	9	12	SAWF, inp.			
SAWF, out.	10	11	SAWF, in.p.			

Absolute Maximum Ratings

All voltages are referred to GND, Pin 2

Parameters	Symbol	Min.	Typ.	Max.	Unit
Supply voltage	Pin 15	V_{S}			13.5
RF inputs	Pin 16-19				5.0
IF outputs	Pin 13-14				V
Dual-state switch voltage	Pin 8	ViDSW			13.5
Junction temperature	$\mathrm{T}_{\text {jmax }}$			V	
Storage temperature	$\mathrm{T}_{\text {stor }}$	-40		150	V

Operating Range

All voltages are referred to GND, Pin 2

Parameters	Test Conditions / Pins	Symbol	Min	Typ	Max	Unit
Supply voltage	Pin 13-15	Vs	10.8	12	13.2	V
Ambient temperature	With heat conductive glue	$\mathrm{T}_{\mathrm{amb}}$	-25		70	${ }^{\circ} \mathrm{C}$
Thermal resistance	Test conditions page 6 SO20 Package	$\mathrm{R}_{\text {thJA }}$		90		K/W

TELEFUNKEN Semiconductors

Electrical Characteristics

Test conditions (unless otherwise specified): $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$. Reference point Pin 2

Parameters	Test Conditions / Pins	Symbol	Min	Typ	Max	Unit
Supply voltage	Pin 13-15	Vs	10.8	12.0	13.2	V
Supply current	$13-15$	Pin	Is		42	50

SAW filter driver $\mathbf{f i}=\mathbf{3 6} \mathbf{~ M H z}$

Input impedance	12	Pin 11,	ZiSAW		450	
Output impedance	Pin 9,10	ZoSAW		70		Ω
Voltage gain	Pin $11,12,9,10$	GvSAW		19		dB

Band A (note 1)

Input frequency range	Pin 18	fiA	48		470	MHz
Input impedance	Figure 3 Pin 18	S11A				
Gain (note 4)	Pin I/P to O/P	GA		30		dB
Noise figure DSB (note 2)	fiA $=50 \mathrm{MHz}$ Pin I/P to O/P fiA $=150 \mathrm{MHz}$	NF		11.5 12		dB dB
Input level for (note 3):	Each carrier					
IM3 (interm. of 3rd order)	fiA $=71 \mathrm{MHz} \quad$ Pin I/P	ViA		-22		dBm
IM2 (interm. of 2nd order)	fiA $=71 \mathrm{MHz} \quad$ Pin I/P	ViA		-22		dBm

Band B (note 1)						
Input frequency range	Pin 16, 17	fiB	470		860	MHz
Input impedance	Figure $3 \quad$ Pin 16, 17	S11B				
Gain (note 4)	Pin I/P to O/P	GB		34		dB
Noise figure DSB (note 2)	$\mathrm{fiB}=500 \mathrm{MHz}$ Pin I/P to O/P $\mathrm{fiB}=800 \mathrm{Mhz}$	NF		$\begin{aligned} & 10.5 \\ & 11.5 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input level for (note 3)	Each carrier					
IM3 (interm. of 3rd order)	$\mathrm{fiB}=600 \mathrm{MHz} \quad$ Pin I/P	ViB		-27		dBm

Notes:

1) The RF input B is symmetrical driven by means of a hybrid for 180° phase shifting, consequently the source impedance is 100Ω. All other impedance for RF tests is 50Ω.
2) The noise figure (NF) is the value for double-side-band measurement.
3) The intermodulation test (2-carrier-method) which is made on IF-centre is in reference to a signal-to-IM ratio of 60 dB .
4) Gain is the ratio of the voltage at the primary coil of the available voltage at the input.

Temic

Test and Principle Application Circuit

Figure 2. Test and principle application circuit

PCB for the $\mathbf{R}_{\text {thJA }}-$ Measurement

Figure 3. PCB for the $\mathrm{R}_{\text {thJA }}$-measurement

Input Impedance Mixer Band A (S11A) and B (S11B)

Figure 4. Input impedance mixer band $\mathrm{A}(\mathrm{S} 11 \mathrm{~A})$ and B (S11B)

1 VHF-Low

Normalised to 50Ω, measuring range 45 MHz to 750 MHz .

2 VHF-High and UHF

Normalised to 50Ω, measuring range 45 MHz to 1045 MHz . Input is driven symmetrical.
The output impedance of the hybrid is 100Ω, the measured level is then calculated in reference to 50Ω.

Dimensions in mm:

Package: SO20

technical drawings according to DIN specifications

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0) 7131672423

